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ABSTRACT

In this note we consider the linearized equation for the buckling of a

viscoelastic rod from an undeformed virgin state. We show that this equation

does not exhibit buckled solutions for axial end thrusts which - after

application - are held constant. Though this result is apparently known,

there appears to be no proof available in the literature.

We show further that if the load is allowed to vary with time, then, in

contrast to elastica theory, there is an uncountably infinite number of

buckled solutions.
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SIGNIFICANCE AND EXPLANATION

The recent use of polymeric materials for structural purposes renders

important the careful study of viscoelastic buckling, a phenomenon quite

different from that associated with elastic materials, especially when the

time scale of interest is large. In this paper we show that the linearized

equation for the buckling of a viscoelastic rod from its virgin state does not

exhibit buckled solutions for axial end thrusts which - after application -

are held constant. We show further that if the load is allowed to vary with

time, then, in contrast to elastica theory, there is an uncountably infinite

number of buckled solutions.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



ON THL BUCKLING OF LINEAR VISCOELASTIC RODS

1 12Morton E. Gurtin , Victor J. Mizel , and David W. Reynolds2

1. Basic equations.

Consider a thin inextensible rod, pinned3 at the ends, and

acted on by an axial end thrust P(t) in such a way that its

center-line bends in a plane. For each material point x and

time t, let cp(x,t) denote the angle between the horizontal

axis and the tangent to the rod at x (Figure 1), and let

m(x,t) designate the bending moment at x. Here, for con-

venience, we label material points by their positions x c [O,L]

in the undeformed, straight configuration the rod is assumed to

be in prior to time zero.

We work within the quasi-static theory; thus balance of

moments has the form
4

m' + P sin g =O, (1)

where m' = bq/ax. We assume that the rod is linearly visco-

elastic in the sense of the constitutive equation5

t

m(x,t) = p '(x,t) + j a(t-s)q,'(x,s)ds (2)

0

giving the bending moment as a function of the past history of

the curvature ep'. Here 0 > 0 is the instantaneous flexural

Professor of Mathematics, Department of Mathematics, Carnegie-Mellon
University, Pittsburgh, PA 15213.

2Research Assistant, Department of Mathematics, Carnegie-Mellon University,
Pittsburgh, PA 15213.
3 In the interest of brevity, we consider only pinned ends. Our
results go through, without change, for any of the standard
boundary conditions. (In this connection, cf. (13 .)

4Cf., e.g., [2], §262.

'Here we use the fact that p(x,t) = 0 for t < 0.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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rigidity, while a, assumed continuous and <0, measures internal

dissipation; theunique solution G(s), s > 0, of the initial-

value problem

G(s) = a(s), G(O)

is the (moment-curvature) relaxation function.

Equations (1) and (2) yield the integro-differential equa-

tion

t

P" (x,t) + i cL(t-s)cp"(x,s)ds + P(t)sin ep(x,t) = 0,

0

or equivalently, using the standard notation for convolutions,

OC" + CL * cp" + P sin Cp = 0.

Since the ends of the rod are pinned, the relevant-boundary

conditions are

m(0,t) = m(L,t) = 0

for dil t, or, by (2) and the standard uniqueness theorem for

linear Volterra integral equations,

cp'(0,t) = p'(L,t) = 0

for all t. Further, as the end of the rod corresponding to

the material point x = L can move only horizontally, we have

the additional constraint

-3-



L

sin cp(x,t)dx = 0.
0

In this note we confine our attention to the linear theory

and hence replace sin c by cp in the above equations. The

resulting boundary-value problem then takes the form
1

se0" + a * CP + PP = 0,

T'(0,t) = cp'(L,t) = 0, (3)

L

S ep(x,t)dx = .

0

1k

Cf. (3],(4] for a discussion of equations similar to (311 ,
but with P = constant. To our knowledge no previous paper
has allowed P(t) to depend on t.

-4-



2. Impossibility of buckled solutions when P(t) = constant.

In this section we show that the problem (3) has only the

zero solution when

P(t) = P = constant for t 0.

With this in mind, let 0 < P1 < P2 <... < Pn( '  and

4 1 (x),' 2 (x), ...,n(X),'." denote the eigenvalues and eigen-

vectors of the corresponding elastic problem:

00n n+ Pnn = 0,

On'(0) = On'(L) = 0,. (4)

L

e 0 n(X)dx = 2;
0

i.e.,

(x) Cos = r-r---, n= 1,2, (5)
n L n L2

Suppose that cp(x,t) is a sufficiently smooth solution of (3)

and define

L
"n (t) = qx(x,t)*n(x)dx. (6)

0

Then, since v and 4n have vanishing spatial derivatives at

the ends of the rod, two integrations by parts in conjunction

with (4) yield

-5-



L L p

fP I"by dx j cp4o"dx = -
n~

0 0

Thus multiplying (3)1 by On and integrating with respect to

x over the interval (0,L) results in the integral equation

P
(P-Pn)n - 2  * p = 0 (7)

n n Pn '=

for n = 1,2 ....

If P 'A Pn' (7) is a Volterra equation of the second kind,

which has the unique solution

On (t) = 0 (8)

for all t. On the other hand, if P = n,

M * = 0,
n

and hence, by Titchmarsh's theorem 1 , (8) holds in this case as

well. By (6) and (8), ep is orthogonal to each function On

of the form (5) 1 . This is clearly possible only if cp(x,t)

is independent of x, and the desired conclusion, p 0,

follows from (3) 3.

Cf., e.g., [5], Theorem 152.
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3. Existence of buckled solutions with P(t) y4 constant.

There are buckled solutions for certain nonconstant loads.

To see this consider solutions of the form

CP(xt) = Y(t)On(x)

for t > 0. By (4) 2, 3 this function satisfies the boundary

conditions (3)2 and the constraint condition (3)3. Moreover,

by (4)l' V will satisfy the differential equation (3), pro-

vided y and P satisfy the integral equation

Pt
[P(t) - Pn]-Y(t) n- j a(t-s)Y(s)ds = 0. (9)

0

This equation can have many solutions. A simple example

is

y(t) = constant, P(t) = P nq(t),

with

G (t)
Q(t) = G(0)

For this solution the angle cp(x,t) jumps to its elastic shape

at t = 0 and remains there for t > 0. The requisite axial

thrust is initially the elastic buckling load Pn' but for

t > 0, P(t) decreases in proportion to the relaxation function

G(t).

-7-



Solutions continuous in time at t = 0 are also possible.

For example,

t

y(t) = At (A = constant), P(t) = Pn Q(s)ds

forms a solution. (Note that, again, P(0 + ) = Pn.)
n)

More generally, (9) can be rewritten as

-M =YMt + Y * i(t).
y *t) (10)Pn Y

thus any function y > 0 on [0,a ) yields a buckled solution

with P given by (10). It is not difficult to show that

++ * +P(0+ ) exists when y(0+ ) = 0, provided Y(0+ ) > 0. Thus any

smooth function y on [O,cD) with y > 0 on (0,co), y(0) = 0,

and y(0+) > 0 also generates a buckled solution.I

Thus, interestingly, in contrast to elastica theory

there is an uncountably infinite number of buckled solutions

(even modulo multiplicative constants).

Acknowledqment. This work was supported by the Army Research

Office (MEG, DWR) and the National Science Foundation (VJM).

IConditions on P(t) which insure the existence of nontrivial
y(t) are given in [,1. This paper also investigates the
asymptotic behavior of buckled solutions.
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